ELASTISITAS

V.1 Elastisitas, Tegangan dan Regangan

Pada bagian ini kita mempelajari efek dari gaya-gaya yang bekerja pada suatu obyek. Beberapa obyek berubah bentuk akibat pengaruh gaya-gaya yang bekerja padanya. Jika sebuah obyek yang berupa kawat tembaga padanya digantungkan beban (lihat Gambar (5.1), maka kawat tersebut akan bertambah panjang.
Gambar 5.1
Apabila elongasi (perpanjangan) kawat L cukup kecil dibandingkan dengan panjang mula-mula, maka secara eksperimen diperoleh bahwa L sebanding dengan berat beban atau gaya yang dikenakan pada benda [dikemukakan pertama kali oleh Robert Hooke (1635-1707)]. Kesetaraan ini dapat ditulis dalam bentuk persamaan :
F = k L
(5.1) Dengan F menyatakan gaya atau berat tarik pada obyek, L adalah pertambahan panjang dan k adalah tetapan.
Persamaan (5.1) dikenal sebagai Hukum Hooke, berlaku untuk semua material padat; dari besi hingga tulang, tetapi hanya berlaku hingga titik tertentu. Jika gaya semakin diperbesar, obyek akan terus bertambah panjang dan akhirnya putus. Gambar (5.2) menunjukkan suatu tipe grafik elongasi terhadap gaya. Hingga titik yang disebut "batas kesetaraan", persamaan (5.1) merupakan pendekatan terbaik untuk beberapa jenis material, dan kurvanya adalah garis lurus. Selama perpanjangan masih dalam daerah elastis, yakni daerah di bawah batas elastisitas, obyek akan kembali ke panjang semula jika gaya yang bekerja dihilangkan. Di luar batas elastisitas adalah daerah plastis. Jika perpanjangan dilanjutkan pada daerah plastis, maka obyek akan mengalami deformasi permanen. Perpanjangan maksimum dicapai pada titik putus yang juga dikenal sebagai kekuatan ultimasi (ultimate strength) dari material.
Tabel 1 Kuat Ultimasi Beberapa Material
Tabel 2 Modulus Young, Modulus Puntir dan Modulus bulk beberpa Material
Besar elongasi dari suatu obyek, seperti batang yang ditunjukkan pada gambar 5.1, tidak hanya bergantung pada gaya yang dikenakan padanya, tetapi juga bergantung pada jenis material dan dimensi obyek. Jika kita bandingakan batang yang terbuat dari material yang sama tetapi berbeda panjang dan luas penampangnya, ditemukan bahwa jika gaya yang dikenakan sama, besar perpanjangan sebanding dengan gaya dan panjang mula-mula serta berbanding terbalik dengan luas penampangnya.
(5.2) dimana Lo adalah panjang mula-mula obyek, A adalah luas penampang dan L adalah perubahan panjang berkenaan dengan gaya yang dikenakan. Y adalah konstanta yang dikenal sebagai modulus elastis, atau "Modulus Young". Nilai Y hanya bergantung pada jenis material. Nilai Modulus Young untuk beberapa jenis material diberikan pada tabel 5.1. Persamaan (5.2) lebih sering digunakan untuk perhitungan praktis dari pada persamaan (5.1) karena tidak bergantung pada ukuran dan bentuk obyek.
Gambar 5. 2
Gambar 5.2 Elongasi terhadap gaya
Persamaan (5.2) dapat ditulis kembali seperti berikut :
(5.3) Atau

dimana stress didefenisikan sebagai gaya per satuan luas, sedangkan strain sebagai ratio perubahan panjang terhadap panjang mula-mula.
Batang yang ditunjukkan pada Gambar 5.1 dikatakan berada di bawah tegangan merenggang (tensile stress). Bentuk tegangan lain adalah tegangan menekan (compressive stress), yang merupakan lawan dari tensile stress, dan tegangan memuntir (shear stress) yang terdiri dari dua gaya yang sama tetapi arahnya berlawanan dan tidak segaris (lihat Gambar 5.3).
Gambar 5.3 Tipe-tipe Tegangan : (a) Merenggang (b) Menekan (c) Menekan
Persamaan 5.2 dapat diterapkan baik untuk tegangan menekan maupun tegangan memuntir, untuk tegangan memuntir kita dapat tulis persamaan menjadi:
(5.4) tetapi L, L0 dan A harus diinterpretasikan ulang sebagaimana ditunjukkan pada Gambar 5.3c. ingat bahwa A adalah luas dari permukaan paralel terhadap gaya yang dikenakan, dan L tegak lurus terhadap Lo, konstanta porposionalitas adalah 1/G, dengan G dikenal sebagai Modulus Puntir (share modulus) dan umumnya mempunyai harga 1/2 hingga 1/3 harga Modulus Young Y (lihat Tabel 5.2). Obyek empat persegi panjang berada dibawah tegangan memuntir dalam Gambar 5.3c tidak secara aktual dalam keseimbangan di bawah gaya-gaya yang ditunjukkan, jika jumlah torsi tidak sama dengan nol. Kalau obyek ternyata dalam keadaan seimbang, berarti harus ada dua gaya yang bekerja padanya yang membuat jumlah torsi sama dengan nol. Satu gaya bekerja ke arah vertikal ke atas di sisi kanan, dan yang lain ke arah vertikal ke bawah pada sisi kiri seperti ditunjukkan pada gambar 5.4.
Gambar 5.4 Keseimbangan Gaya-gaya dan Torsi untuk Tegangan Memuntir
Jika pada sebuah obyek bekerja gaya-gaya dari smua sisi, volume obyek akan berkurang. Keadaan seperti ini umumnya terjadi jika obyek berada di dalam fluida, dalam kasus ini fluida mendesakkan tekanan pada obyek di semua arah. Tekanan didefinisikan sebagai gaya persatuan luas, dan merupakan ekivalen dari tegangan (stress). Untuk keadaan ini perubahan volume V, ditemukan sebanding dengan volume mula-mula Vo dan penambahan tekanan P.
Kita peroleh hubungan yang sama seperti persamaan (5.2) tetapi dengan konstanta proporsionalitas 1/B, dengan B adalah Modulus Bulk (bulk modulus ), dalam hal ini :
(5.5) Tanda minus menunjukkan bahwa volume berkurang dengan bertambahnya tekanan. Harga-harga Modulus Bulk untuk beberapa jenis material diberikan pada Tabel 5.2. Selanjutnya inversi Modulus Bulk (1/B), disebut kompresibilitas (conpressibility), diberikan simbol K yaitu :
(5.6)
Contoh 1: Balok dengan luas penampang A ditarik pada kedua ujungnya dengan gaya F yang sama. Pandang sebuah bidang yang membentuk sudut seperti terlihat pada gambar.
  1. Hitunglah tegangan tarik pada bidang tersebut, dan tuliskan dalam F, A, dan
  2. Hitunglah tegangan geser pada bidang tersebut, dan tuliskan dalam F, A, dan
  3. Untuk harga berapa, tegangan tarik maksimum
Jawab :
  1. Tegangan tarik pada A�f :
  2. Tegangan geser pada A' :
  3. Tegangan tarik maksimum, bila cos2 = 1,
    cos =1 dengan 1=0 dan 2=180o (salah) karena <= 90o
Contoh 2. Sebuah kawat piano dari baja panjangnya 1,60 m memiliki diameter 0,20 cm. Berapa besar tegangan pada kawat jika kawat bertambah panjang 0,30 cm setelah direnggangkan?
Jawab :
Contoh 3. Suatu bahan . Bahan berupa kawat logam dengan panjang L dan luas penampang A digulung menjadi pegas. Jika logam mempunyai modulus Young Y dan perubahan transversal kawat gulungan kawat itu diabaikan, tunjukkan bahwa tetapan pegasnya diberikan oleh YA/Lo.
Jawab : Sepanjang deformasi terjadi pada daerah hukum Hooke, maka akan berlaku F = k x. Berdasarkan persamaan (5.5), F = Y A L/Lo. Dalam hal ini x = L, sehingga dari kedua persamaan di atas diperoleh k L = Y A L/Lo atau k = Y A/Lo.
Contoh 4. Volume minyak di dalam sebuah alat tekan hidrolik adalah 5 m3. Berapa penyusutan volumenya bila minyak itu menderita tekanan sebesar 136 atm? Kompresibilitas minyak tersebut 20 x 10-6 atm-1.
Jawab :
Contoh 5. Sebuah balok uniform massanya 1500 kg dan panjangnya 20,0 m ditindih oleh 15.000 kg peti besi, lihat gambar
a. Hitung gaya pada setiap tiang penyangga vertikal.
b. Berapa luas penampang minimum dari kedua tiang untuk menyanggah balok, anggap tiang terbuat dari beton dengan faktor keselamatan (safety factor) 6?
c. Berapa strain yang dialami oleh tiang sebelah kanan.
Jawab : a. Di titik gaya Fi,; (r1 x W1) + (r2 x W2) + (r2 x F2) = 0
-(10m)(1500kg)g-(15m)(15.000kg)g+(20)F2 = 0
(20)F2 = (10m)(1500kg)g + (15m)(15.000kg)g
F2 = (12.000kg)g=115.000 N dengan g =9,8 kg/m2
Untuk menghitung F1, kita gunakan Fy=0
Fy=F1 - (1500kg)g - (15.000kg)g + F2 = 0
F1 = (1500kg)g + (15.000kg)g + (12.000)kg
F1 = (4500kg)g = 44.100N = 0,4 x 105N
b. Berdasarkan Tabel 5.1 kekuatan menekan ultimasi untuk material beton adalah 2,0 x 107 N/m2. Karena faktor keselamatan 6, maka stress maksimum yang diperbolehkan adalah
(1/6)( 2,0 x 107 N/m2) = 3,3 x 106 N/m2 = F/A Karena F = 1,2 x 105 N,
maka A = (1,2 x 105N) / (3,3 x 106 N/m2) atau 360 cm2
c. Strain = L/Lo=(1/E)(F/A)=(1/(2,0 x 1010 N/m2)) (3,3 x 106 N/m2) = 1,7 x 10-4

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

listrik dinamis

LISTRIK DINAMIS

Listrik Dinamis adalah listrik yang dapat bergerak. cara mengukur kuat arus pada listrik dinamis adalah muatan listrik dibagai waktu dengan satuan muatan listrik adalah coulumb dan satuan waktu adalah detik. kuat arus pada rangkaian bercabang sama dengan kuata arus yang masuk sama dengan kuat arus yang keluar. sedangkan pada rangkaian seri kuat arus tetap sama disetiap ujung-ujung hambatan. Sebaliknya tegangan berbeda pada hambatan. pada rangkaian seri tegangan sangat tergantung pada hambatan, tetapi pada rangkaian bercabang tegangan tidak berpengaruh pada hambatan. semua itu telah dikemukakan oleh hukum kirchoff yang berbunyi "jumlah kuat arus listrik yang masuk sama dengan jumlah kuat arus listrik yang keluar". berdasarkan hukum ohm dapat disimpulkan cara mengukur tegangan listrik adalah kuat arus × hambatan. Hambatan nilainya selalu sama karena tegangan sebanding dengan kuat arus. tegangan memiliki satuan volt(V) dan kuat arus adalah ampere (A) serta hambatan adalah ohm.

Hukum Ohm

Gambar:ohm1.jpg
Aliran arus listrik dalam suatu rangkaian tidak berakhir pada alat listrik. tetapi melingkar kernbali ke sumber arus. Pada dasarnya alat listrik bersifat menghambat alus listrik. Hubungan antara arus listrik, tegangan, dan hambatan dapat diibaratkan seperti air yang mengalir pada suatu saluran. Orang yang pertama kali meneliti hubungan antara arus listrik, tegangan. dan hambatan adalah Georg Simon Ohm (1787-1854) seorang ahli fisika Jerman. Hubungan tersebut lebih dikenal dengan sebutan hukum Ohm.
Setiap arus yang mengalir melalui suatu penghantar selalu mengalami hambatan. Jika hambatan listrik dilambangkan dengan R. beda potensial V, dan kuat arus I, hubungan antara R, V, dan I secara matematis dapat ditulis:
Gambar:ohm.jpg
Sebuah penghantar dikatakan mempunyai nilai hambatan 1 Ω jika tegangan 1 V di antara kedua ujungnya mampu mengalirkan arus listrik sebesar 1 A melalui konduktor itu. Data-data percobaan hukum Ohm dapat ditampilkan dalam bentuk grafik seperti gambar di samping. Pada pelajaran Matematika telah diketahui bahwa kemiringan garis merupakan hasil bagi nilai-nilai pada sumbu vertikal (ordinat) oleh nilai-nilai yang bersesuaian pada sumbu horizontal (absis). Berdasarkan grafik, kemiringan garis adalah α = V/T Kemiringan ini tidak lain adalah nilai hambatan (R). Makin besar kemiringan berarti hambatan (R) makin besar. Artinya, jika ada suatu bahan dengan kemiringan grafik besar. bahan tersebut makin sulit dilewati arus listrik. Komponen yang khusus dibuat untuk menghambat arus listrik disebut resistor (pengharnbat). Sebuah resistor dapat dibuat agar mempunyai nilai hambatan tertentu. Jika dipasang pada rangkaian sederhana, resistor berfungsi untuk mengurangi kuat arus. Namun, jika dipasang pada rangkaian yang
rumit, seperti radio, televisi, dan komputer, resistor dapat berfungsi sebagai pengatur kuat arus. Dengan demikian, komponen-komponen dalam rangkaian itu dapat berfungsi dengan baik. Resistor sederhana dapat dibuat dari bahan nikrom (campuran antara nikel, besi. krom, dan karbon). Selain itu, resistor juga dapat dibuat dari bahan karbon. Nilai hambatan suatu resistor dapat diukur secara langsung dengan ohmmeter. Biasanya, ohmmeter dipasang hersama-sama dengan amperemeter dan voltmeter dalam satu perangkat yang disebut multimeter. Selain dengan ohmmeter, nilai hambatan resistor dapat diukur secara tidak langsung dengan metode amperemeter voltmeter.

Hambatan Kawat Penghantar

Berdasarkan percobaan di atas. dapat disimpulkan bahwa besar hambatan suatu kawat penghantar 1. Sebanding dengan panjang kawat penghantar. artinya makin panjang penghantar, makin besar hambatannya, 2. Bergantung pada jenis bahan kawat (sebanding dengan hambatan jenis kawat), dan 3. berbanding terbalik dengan luas penampang kawat, artinya makin kecil luas penampang, makin besar hambatannya. Jika panjang kawat dilambangkan ℓ, hambatan jenis ρ, dan luas penampang kawat A. Secara matematis, besar hambatan kawat dapat ditulis :


Gambar:kawat.jpg
Nilai hambatan suatu penghantar tidak bergantung pada beda potensialnya. Beda potensial hanya dapat mengubah kuat arus yang melalui penghantar itu. Jika penghantar yang dilalui sangat panjang, kuat arusnya akan berkurang. Hal itu terjadi karena diperlukan energi yang sangat besar untuk mengalirkan arus listrik pada penghantar panjang. Keadaan seperti itu dikatakan tegangan listrik turun. Makin panjang penghantar, makin besar pula penurunan tegangan listrik.
Gambar:hambatan.jpg

Hukum Kirchoff

Arus listrik yang melalui suatu penghantar dapat kita pandang sebagai aliran air sungai. Jika sungai tidak bercabang, jumlah air di setiap tempat pada sungai tersebut sama. Demikian halnya dengan arus listrik.
Gambar:hkirchoff.jpg
Jumlah kuat arus yang masuk ke suatu titik percabangan sama dengan jumlah kuat arus yang keluar dari titik percabangan tersebut. Pernyataan itu sering dikenal sebagai hukum I Kirchhoff karena dikemukakan pertama kali oleh Kirchhoff.
Maka diperoleh persamaan :
I1 + I2 = I3 + I4 + I5
I masuk = I keluar

Rangkaian Hambatan

  • Rangkaian Seri
Berdasarkan hukum Ohm: V = IR, pada hambatan R1 terdapat teganganV1 =IR1 dan pada hambatan R2 terdapat tegangan V2 = IR 2. Karena arus listrik mengalir melalui hambatan R1 dan hambatan R2, tegangan totalnya adalah VAC = IR1 + IR2.
Mengingat VAC merupakan tegangan total dan kuat arus listrik yang mengalir pada rangkaian seperti di atas (rangkaian tak bercabang) di setiap titik sama maka
VAC = IR1 + IR2
I R1 = I(R1 + R2)
R1 = R1 + R2 ; R1 = hambatan total
Rangkaian seperti di atas disebut rangkaian seri. Selanjutnya, R1 ditulis Rs (R seri) sehingga Rs = R1 + R2 +...+Rn, dengan n = jumlah resistor. Jadi, jika beberapa buah hambatan dirangkai secara seri, nilai hambatannya bertambah besar. Akibatnya, kuat arus yang mengalir makin kecil. Hal inilah yang menyebabkan nyala lampu menjadi kurang terang (agak redup) jika dirangkai secara seri. Makin banyak lampu yang dirangkai secara seri, nyalanya makin redup. Jika satu lampu mati (putus), lampu yang lain padam.
  • Rangakaian Paralel
Mengingat hukum Ohm: I = V/R dan I = I1+ I2, maka
Gambar:paralel1.jpg
Pada rangkaian seperti di atas (rangkaian bercabang), V AB =V1 = V2 = V. Dengan demikian, diperoleh persamaan
Gambar:paralel2.jpg
Rangkaian yang menghasilkan persamaan seperti di atas disebut rangkaian paralel. Oleh karena itu, selanjutnya Rt ditulis Rp (Rp = R paralel). Dengan demikian, diperoleh persamaan Gambar:paralel3.jpg
Berdasarkan persamaan di atas, dapat disimpulkan bahwa dalam rangkaian paralel, nilai hambatan total (Rp) lebih kecil dari pada nilai masing-masing hambatan penyusunnya (R1 dan R2). Oleh karena itu, beberapa lampu yang disusun secara paralel sama terangnya dengan lampu pada intensitas normal (tidak mengalami penurunan). Jika salah satu lampu mati (putus), lampu yang lain tetap menyala.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS